
Rebuilding a Linux Infrastructure
in under an Hour...

Brought to you by Chef.

Thursday, December 13, 12

Starting Point

A business that requires constant change with rapid turn-around

A strong desire to automate the entire Linux Infrastructure

A git Repository

A Backup System

Knowledgeable Developers and Engineers

Thursday, December 13, 12

Laying the Groundwork

1. Server Infrastructure

2. Backups

3. A software development methodology supporting rapid change

4. An automated system to quickly apply change

Thursday, December 13, 12

The Cloud

•Long Term Backups at a very reasonable price

•As much Infrastructure as the business’ budget supports

Amazon EC2, EBS snapshots and Glacier

Thursday, December 13, 12

Continuous Deployment

• Multiple small deployments decreases the risk compared to
large incremental (waterfall type) deployments.

• Developer committing to mainline automatically triggers
QA, and deployment to production.

• Flickr has successfully implemented a DevOps model that
deploys code to Production more than 10 times a day!

Thursday, December 13, 12

Continuous Deployment

•Easily accommodates all
types of change

•Complete Infrastructure
wide changes lightning fast

•Q/A must be built into the
process

http://en.wikipedia.org/wiki/Continuous_deployment

Thursday, December 13, 12

http://en.wikipedia.org/wiki/Continuous_deployment
http://en.wikipedia.org/wiki/Continuous_deployment

Automation is key to an effective
C.D. implementation

• Reliability of Software Stack

• Consistency on all nodes

• Accepts change over time

Thursday, December 13, 12

An automated System to rapidly
deploy changes

• Complete Automation of the entire Software Stack

• Easy Deployment of new server nodes

• Disaster Recovery

• Scalability -- dealing with spikes of traffic in Real-Time

• The Infrastructure exists as ‘code’

• Documentation included, by adding in-line comments and defining server ‘Roles’

Thursday, December 13, 12

Infrastructure Management tools

Puppet

Opscode Chef

CF Engine

Salt

Custom Ruby/Python/Bash scripts

Each has it’s positives and Negatives, today we will focus on
Opscode Chef

Thursday, December 13, 12

Anatomy of Chef

http://wiki.opscode.com/display/chef/Architecture

Thursday, December 13, 12

http://wiki.opscode.com/display/chef/Architecture
http://wiki.opscode.com/display/chef/Architecture

Standing on the shoulders
of Giants

Opscode Cookbook Repo:

http://community.opscode.com/

Become a member

http://community.opscode.com/cookbooks/

workstation:~ user$ knife cookbook site download <name>

Thursday, December 13, 12

http://community.opscode.com/
http://community.opscode.com/
http://community.opscode.com/cookbooks/
http://community.opscode.com/cookbooks/

Knife

DevOps Engineer’s tool of choice

workstn1:~ user$ knife ec2 server create -I <ami> -x <user>

workstn1:~ user$ knife bootstrap servername

workstn1:~ user$ knife node edit web-2

workstn1:~ user$ knife ssh name:web-2 "sudo chef-client"

Thursday, December 13, 12

Consistent deployments

“apt-get install” and “yum install” provide the similar end results

 The chef “package” resource adds a layer of abstraction

Thursday, December 13, 12

The need for boundaries
•Keeping code consistent in git and Chef

• No manual uploads with knife to chef, only automated uploads

• script to clone git, identify differences and upload, if necessary

• Or should we elect a Master Chef to control the uploads?

•Storing Passwords Securely
• Encrypted Data Bags

• Who keeps the keys?

• What about logging in the recipe?

•Bringing it all together
• Communication between groups

• git was created to solve collaboration issues encountered when multiple developers in distant
locations work together (along with many other issues related to code repository control).

Thursday, December 13, 12

Rebuilding an Infrastructure

Opscode Chef, the Data and EC2... Nothing else matters.

EC2 can provide multiple ‘warm’ backup sites at minimal cost...
Any number of nodes can be created quickly and easily. Setting
up an Infrastructure is a complicated task, and traditionally it was
extremely costly (time and hardware) to replicate an Enterprise

class environment. EC2 provides the hardware on demand,
Glacier provides the inexpensive, long-term backup solution.

Thursday, December 13, 12

Rebuilding in an organized fashion

•Deployment of the crucial VMs

•Chef Server

•CouchDB

•RabbitMQ

•Git repository

•Bootstrap all of the ‘vanilla’ VMs

Thursday, December 13, 12

Rebuilding in an organized fashion

•Edit the runlist of all nodes

•Run chef-client on the nodes

•knife ssh role:MySql-Master “sudo chef-client”

•knife ssh role:Web-Server “sudo chef-client”

•knife ssh name:* “sudo chef-client”

•QA

Thursday, December 13, 12

The Final Cut-over

•DNS
• This could take hours to propogate

•Load-Balancer or TCP Proxy in Data Center
• Outage in the Data Center (Internet Connectivity, Power, etc.)

•Planning for this moment should happen months in advance!!!

Thursday, December 13, 12

Leveraging the cloud permanently

•DNS
• Third Party Provider using TTLs that expire quickly

•Load-Balancer in the cloud
• VPN connection from cloud provider to the DC

• Issues with nodes in the DC triggers a fail-over to EC2

•Most cloud providers have multiple Data Centers
• Use all available cloud Data Centers, even Amazon only claims 99.95% uptime

Thursday, December 13, 12

References

Opscode Chef
http://www.opscode.com/chef/

http://wiki.opscode.com/display/chef/Home

https://github.com/opscode/cookbooks

Amazon AWS
http://aws.amazon.com/

Wikipedia
http://en.wikipedia.org/wiki/Continuous_integration

Thursday, December 13, 12

http://www.opscode.com/chef/
http://www.opscode.com/chef/
http://wiki.opscode.com/display/chef/Home
http://wiki.opscode.com/display/chef/Home
https://github.com/opscode/cookbooks
https://github.com/opscode/cookbooks
http://aws.amazon.com/
http://aws.amazon.com/
http://en.wikipedia.org/wiki/Continuous_integration
http://en.wikipedia.org/wiki/Continuous_integration

